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We study the spatial power spectra of Nikolaevskii turbulence in one-dimensional space. First, we show that
the energy distribution in wave-number space is extensive in nature. Then, we demonstrate that, when varying
a particular parameter, the spectrum becomes qualitatively indistinguishable from that of Kuramoto-
Sivashinsky turbulence. Next, we derive the critical exponents of turbulent fluctuations. Finally, we argue that
in some previous studies, parameter values for which this type of turbulence does not appear were mistakenly
considered, and we resolve inconsistencies obtained in previous studies.
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The spontaneous formation of spatially periodic structure
in reaction-diffusion systems was predicted by Turing in
1952 f1g and experimentally confirmed many years later
f2,3g. The so-called Turing mechanism is now widely ac-
cepted, and we can retrieve many papers by searching for the
keyword “Turing pattern,” including a large number written
this centuryf4g. Recently, we found evidence that the Turing
instability in oscillatory systems can also cause an initially
uniform state to evolve into a state characterized by spa-
tiotemporal chaos instead of spatially periodic structure
f5,6g. This type of chemical turbulence is exhibited by the
equation

]tcsx,td = − ]x
2fe − s1 + ]x

2d2gc − s]xcd2, s1d

which was derived from a class of oscillatory reaction-
diffusion systems by means of a phase reduction technique
f6g. An equivalent equation was proposed by Nikolaevskii as
a model of seismic phenomenaf7g. The uniform steady state
of Eq. s1d, c=0, is unstable with respect to finite-wavelength
perturbations when the small parametere is positive. How-
ever, this instability does not lead to spatially periodic steady
states, because the equation possesses a Goldstone mode,
due to its invariance under transformations of the formc
→c+const, and the corresponding marginally stable long-
wavelength modes interact with the unstable short-
wavelength modes. As a consequence, spatially periodic
steady states do not appear, and instead spatiotemporal chaos
is realized supercriticallyf8,9g. Spatiotemporal chaos exhib-
iting a similar onset has been observed experimentally in
electrohydrodynamic convections“soft-mode turbulence”d in
homeotropically aligned nematic liquid crystalsf10g and nu-
merically in Rayleigh-Bénard convection under free-free
boundary conditionsf11g. In particular, Eq.s1d has been ap-
plied to the study of the former type of convective system. It
is thus seen that this class of spatiotemporal chaos appears in
many types of physical systems, and for this reason, studying
Eq. s1d is important. In this paper, we study the statistical
properties of the spatiotemporal chaos exhibited by Eq.s1d in
one-dimensional space with periodic boundary conditions.

Also, we argue that in some previous works on Nikolaevskii
turbulence, values ofe that are in fact inappropriate for
studying this type of turbulence were used.

Equations1d has two parameters, the bifurcation param-
eter e and the system sizeL. First, we derive theL depen-
dence of the spatial power spectrumSsqd;kuvqu2l, wherevq

is the spatial Fourier transform ofv;2]xc andkl represents
a long-time average. The quantitySsqd /L is plotted as a
function of the wave numberq for L=29,210,211, and 212

with e=0.02 in Fig. 1. There it is seen thatSsqd /L possesses
a universal form independent ofL. This implies that the en-
ergy distribution in wave-number space is an extensive quan-
tity. In Ref. f12g, the Lyapunov dimension and the
Kolmogorov-Sinai entropy are studied for Eq.s1d in the
casese=0.2, 0.5, and it is shown that these too are extensive
quantities. However, these values ofe are too large for Eq.
s1d to exhibit the type of spatiotemporal chaos in which we
are interested, as we show below.

Second, we consider thee dependence of the spatial
power density spectrumSsqd /L. In the following, we con-
sider only the single system sizeL=29, because, as men-
tioned above,Ssqd /L is independent ofL when L is suffi-
ciently large. The peaks of the spectrum broaden and merge
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FIG. 1. Spatial power density spectrumSsqd /L as a function of
the wave numberq for L=29,210,211, and 212 with e=0.02. The
fact that these plots fall on a universal curve independent ofL
implies the extensive nature of the energy distribution in wave-
number space.

PHYSICAL REVIEW E 71, 025203sRd s2005d

RAPID COMMUNICATIONS

1539-3755/2005/71s2d/025203s4d/$23.00 ©2005 The American Physical Society025203-1



whene increases, as shown in Fig. 2. In particular, whene is
larger than about 0.1, the spectrum is qualitatively indistin-
guishable from that of the Kuramoto-SivashinskysKSd equa-
tion, ]tcsx,td=−]x

2s1+]x
2dc−s]xcd2 f13g. This can be under-

stood as follows. The spatiotemporal chaos exhibited by Eq.
s1d with a sufficiently smalle arises from the uniform steady
state c=0, owing to the interaction between the weakly
stable long-wavelength modes and the unstable short-
wavelength modes. The band of unstable modes has a width
in wave-number space of ordere1/2, lying on either side of
q=1. Therefore, unlesse1/2!1, the weakly stable and un-
stable bands of modes cannot be distinguished, and thus the
situation is effectively the same as that for the KS equation,
in which case chaos arises through interactions among un-
stable long-wavelength modes. As a condition to ensure that
the unstable and weakly stable bands of Eq.s1d are suffi-
ciently separated, we conjecture thate1/2 must be at least one
order of magnitude smaller than 1. Hence, in order to clearly
observe the characteristic Nikolaevskii chaos exhibited by
this equation, we believe that theOsedø0.01 is necessary.
This leads us to conclude that the valuee=0.2 ande=0.5
used in Refs.f12,14g swhich employs a wavelet decomposi-
tiond are too large to observe this type of spatiotemporal
chaos and that the power spectrum found in those works is
actually that of KS spatiotemporal chaos. In fact, it is shown
below that the exponents of thee scaling for the chaotic
fluctuations of Eq.s1d do not converge forOsedù0.1.

Noting that the spatiotemporal chaos exhibited by Eq.s1d
results from the interaction between the long-wavelength
modes nearq=0 and the short-wavelength modes in the un-
stable band surroundingq=1, Matthews and Cox derived
closed-form amplitude equations by hypothesizing that the
behavior of the system can be described in terms of a quan-
tity v taking the form

v = e3/4AsX,Tdeix + c . c . +efsX,Td, s2d

whereA and f represent the slowly varying amplitudes of the
two sets of modes, and we defineX;e1/2x andT;e1t f15g.

Also, Fujisakaet al. derived amplitude equations applicable
in higher-dimensional spaces using the form Eq.s2d f16g.
The validity of this form is supported by numerical results
that show Îkv2l~e3/4 for eP f0.01,0.1g f15g. However,
based on an analysis of the time series of the spatial Fourier
amplitude of turbulent fluctuations for Eq.s1d with the fixed
value e=0.0001, Tribelsky and Tsuboi conjectured the scal-
ing Îkv2l~e1/2 in Ref. f9g. Also, in Ref.f17g it is shown that
Îkv2l~e1 for eP f0.1,1g. The discrepancy in the latter case
seems to be easily accounted for, as it would appear that the
result for the exponent reported in Ref.f17g had not yet
converged, because the value ofe used there is too large.
However, the situation is not so clear with regard to the
apparent inconsistency reported in Ref.f9g, because the
value ofe used there is certainly sufficiently small. Further-
more, we believe that the numerical results of Ref.f15g are
insufficient to establish the validity of the form given in Eq.
s2d for the following reasons:s1,d The results were obtained
for values ofe in a range of only one order,eP f0.01,0.1g. It
is quite likely that this small range is insufficient to yield a
clear result for the power-law exponent.s2,d Studying only
the order parameterÎkv2l, we are able to examine the valid-
ity of only the assumed exponent 3/4 for the amplitude of
eix. Verifying the validity of the other exponents requires a
different approach.s3,d Employing the spatial coordinateX
=e1/2x implies the assumption that the spatial scale of turbu-
lent fluctuations is very much larger than that of the funda-
mental waveeix. This scale separation is ensured whene1/2

!1. Taking this condition as implying thate1/2 can be no
greater than 0.1, we obtain the requirementOsedø0.01 to
guarantee sufficient separation of scales. Now, to resolve the
inconsistency among the results of the previous studies and
to examine the validity of Eq.s2d, we define some new order
parameters and examine theire dependence both for smaller
values ofe and over a wider range of values ofe than in
previous studies.

First, as shown in Fig. 3, we find that the results forÎkv2l
converge fore&0.1, where we haveÎkv2l~e3/4. These re-
sults indicate that if we wish to study the characteristic spa-
tiotemporal chaos exhibited by Eq.s1d, we must choose a
value of e no greater than 0.1. Then, as seen in Fig. 4, we
find Dq~e1/2, whereDq is defined as the width at half maxi-

FIG. 2. Spatial power density spectrumSsqd /L as a function of
the wave numberq for several values ofe with L=29. From top to
bottom, we havee=0.4, 0.2, 0.1, 0.08, 0.06, 0.04, 0.02, 0.01, 0.008,
0.006, 0.004, and 0.002. The inset displays the spatial power den-
sity spectrum obtained from the well-known Kuramoto-Sivashinsky
equation for the sake of comparison.

FIG. 3. e dependence ofÎkv2l. The three lines, included for
reference, have slopes of2/4,3/4, and 4/4.
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mum for the peak centered atq.1 of the spatial power
density spectrum. This is evidence that the characteristic spa-
tial scale of turbulent fluctuations ise−0.5. Finally, we present
in Figs. 5 and 6 thee dependence of the spatial power den-
sities Ssq0d /L and Ssqcd /L for the two characteristic modes
q0 andqc. These are the wave numbers nearest toq=0 and
q=1 sexplicitly, q0=132p /L and qc=8132p /Ld that can
be realized in our system of sizeL=29 with periodic bound-
ary conditions. From the figures it is seen thatSsq0d~e3/2

andSsqcd~e1. The former relation cannot be seen as clearly
as the latter, because, for larger wavelength modes, fewer
wavelengths are contained in the finite-size space, and there-
fore there is a larger statistical error in the result, which is
obtained by integrating Eq.s1d over a finite interval of time.
Here, substitutingv=eaAsX,Tdeix+c.c. +ebfsX,Td into the
Wiener-Khintchine relation,

Ssqd = LE
0

L

kvsxdvs0dle−iqxdx, s3d

we obtain

Ss1d = LE
0

L

e2akAsXdĀs0dldx, s4d

where we have usedkAAl=kĀĀl=kAfl=kĀfl=0. Now, be-
cause the characteristic spatial scale of turbulent fluctuations

is e−1/2, as shown in Fig. 4, we can reasonably assume

kAsXdĀs0dl=expf−e1/2xg. Then, substituting this into the in-
tegrand of Eq.s4d, we obtain

Ss1d = Le2a−1/2. s5d

sHere, we have usedLe1/2@1. This is reasonable because we
consider the sufficiently large systemf19g.d Comparing this
equation and the result displayed in Fig. 6, we finda=3/4,
which is consistent with the result found for the exponent of
Îkv2l obtained from Fig. 3. Similarly, we find

Ss0d = Le2b−1/2, s6d

with b=1 f20g. Thus, we arrive at the following conclusions.
Our results confirm the validity of the form given in Eq.s2d.
Further, they indicate that the result for the exponent of
Îkv2l given in Ref.f17g is erroneous because the value had
not yet converged, as conjectured above. Equationss5d and
s6d imply that the amplitudes of the Fourier modes with
wave numbers 2p /Ls.0d and 1 defined in Ref.f9g are
2pe1/4/ÎL and 2pe1/2/ÎL, respectively. Thus, our results in-
dicate that the values of the quantity ReU /Îe in Figs. 3 and
4 in Ref.f9g are of order 1 and 0.1, respectively, because the
parameter values used there aree=0.0001 andL=2p /p,
wherep=3.125310−3. In fact, the figures in Ref.f9g support
this argument. We believe that the reason why Matthewset
al. reported that the form Eq.s2d is inconsistent with the
numerical results in Ref.f9g is that they missed the −1/2
appearing in the exponents of Eqs.s5d ands6d, which is due
to the spatial correlation of turbulent fluctuations. At the end
of this paragraph, although we consider the sufficiently large
system in this paper, it is worthwhile mentioning that in nu-
merical simulations one has to choose the system sizeL in
such a way thatLe1/2@1, otherwise the −1/2 in the expo-
nents of Eqs.s5d and s6d disappears. This implies thate has
also a lower bounds.L−2d for simulations at fixedL in order
to observe the characteristic Nikolaevskii chaos.

In summary, we have found that the spatial power spec-
trum of Eq.s1d in wave-number space is an extensive quan-
tity. The spectrum foreùOs0.1d is qualitatively indistin-
guishable from that of the Kuramoto-Sivashinsky equation.
We obtained the critical exponents of the turbulent fluctua-

FIG. 5. e dependence ofSsq0.0d. The three lines, included for
reference, have slopes of5/4,6/4, and 7/4.

FIG. 6. e dependence ofSsqc.1d. The three lines, included for
reference, have slopes of3/4,4/4, and 5/4.

FIG. 4. e dependence ofDq. The three lines, included for refer-
ence, have slopes of1/4,2/4, and 3/4.
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tions for Eq.s1d, and we found that these exponents converge
for e&Os0.1d. Beyond such a value, because the unstable
and weakly stable modes of this equation are not well sepa-
rated, it exhibits spatiotemporal chaos of the KS type, not the
Nikolaevskii type. Therefore, we conclude that the works
presented in Refs.f12,14,17g, where values ofe greater than
0.1 were used, in fact studied KS-type chaos. The numerical
results obtained in this paper are consistent with those given
in Ref. f9g and with the amplitude equations appearing in
Ref. f15g. Toh reported that a pulse-distributed model repro-
duces the spatial spectrum of the KS equationf18g. We be-
lieve that that model is applicable also to Eq.s1d, for which

pulses become more regularly distributed ase decreases.
Such studies might make it possible to estimate that the criti-
cal exponents converge fore&Os0.1d. The spectrum of the
KS equation possesses a wavy structure for large wave num-
bers. We believe that for the spectrum of Eq.s1d, the peaks of
this wavy structure, which appear atq=1, 2, 3,…, become
increasingly sharp ase decreases.
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